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Effects of molecular diffusion and of thermal expansion 
on the structure and dynamics of premixed flames in 
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To study effects of flow inhomogeneities on the dynamics of laminar flamelets in 
turbulent flames, with account taken of influences of the gas expansion produced by 
heat release, a previously developed theory of premixed flames in turbulent flows, 
that was based on a diffusive-thermal model in which thermal expansion was neg- 
lected, and that applied to turbulence having scales large compared with the laminar 
flame thickness, is extended by eliminating the hypothesis of negligible expansion and 
by adding the postulate of weak-intensity turbulence. The consideration of thermal 
expansion motivates the formal introduction of multiple-scale methods, which should 
be useful in subsequent investigations. Although the hydrodynamic-instability mecha- 
nism of Landau is not considered, no restriction is imposed on the density change 
across the flame front, and the additional transverse convection correspondingly 
induced by the tilted front is described. By allowing the heat-to-reactant diffusivity 
ratio to differ slightly from unity, clarificatim is achieved of effects of phenomena 
such as flame stretch and the flame-relaxation mechanism traceable to transverse 
diffusive processes associated with flame-front curvature. By carrying the analysis to 
second order in the ratio of the laminar flame thickness to the turbulence scale, an 
equation for evolution of the flame front is derived, containing influences of transverse 
convection, flame relaxation and stretch. This equation explains anomalies recently 
observed a t  low frequencies in experimental data on power spectra of velocity fluc- 
tuations in turbulent flames. It also shows that, concerning the diffusive-stability 
properties of the laminar flame, the density change across the flame thickness produces 
a shift of the stability limits from those obtained in the purely diffusive-thermal model. 
At this second order, the turbulent correction to the flame speed involves only the 
mean area increase produced by wrinkling. The analysis is carried to the fourth order 
to  demonstrate the mean-stretch and mean-curvature effects on the flame speed that 
occur if the diffusivity ratio differs from unity. 
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FIGURE 1. Representative power spectra for the longitudinal gas velocity and for 
the flamelet velocity, measured by Boyer, Clavin & Sabathier (1981). 

1. Introduction 
I n  a previously developed theory (Clavin & Williams 1979) for the structure and 

propagation velocities of premixed flames in turbulent flows having an integral scale 
L, large compared with the laminar flame thickness d, it was found that in a first 
approximation each laminar flamelet moves in the laboratory frame with the stream- 
wise Eulerian displacement % of the turbulent flow. Although this result helped to 
clarify the structure of turbulent flames in the limiting regime for which the turbulent 
flame consists of an ensemble of wrinkled laminar flames, it led to fundamental un- 
certainties concerning the turbulent flame thickness d,. It was found that d, is of 
the order of the root-mean-square displacement (@* when this quantity is large 
compared with d. The corresponding Lagrangian displacement is not stationary ; its 
mean square increases with time, thereby producing the well-known phenomenon of 
turbulent diffusion or dispersion. If % behaves similarly, then d, is predicted to increase 
with time. I n  fact, whenever the power spectrum S,,(v) of the streamwise Eulerian 
velocity fluctuation 42 of the turbulent flow approaches a nonzero value in the limit 
of zero frequency u, the quantity (s)* must diverge for large times. 

Uncertainties concerning d i  and concerning motion of laminar flamelets in turbu- 
lent flows prompted initiation of experimental work on weakly turbulent premixed 
flames by Sabathier, Boyer & Clavin (1981). Experimental conditions were sought 
that were as close as possible to those considered in the theoretical work of Clavin & 
Williams (1979). I n  addition to measuring S,,(v) just ahead of the flame by laser- 
Doppler techniques, Sabathier et al. employed the optical method proposed by Boyer 
(1980) to measure the power spectrum X,,(v) of the local velocity of the wrinkled flame 
front for frequencies from 0.1 to 20 Hz. If the flamelets follow the displacement 6 as 
predicted, then SuzL(v) and X i i ( u )  should coincide. As illustrated schematically in 
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figure 1, agreement is achieved a t  frequencies above about 3 Hz, but at lower frequencies 
a premature peak develops in Xoioi(v) which decreases toward zero while S J v )  is 
still increasing. This discrepancy precludes the possibility of employing flame data 
to obtain information on the behaviour of Suu(v) in the frequency range of uncertainty, 
below Hz, and it poses a new problem of explaining the departure from predic- 
tions between 10-1 and 3 Hz. The source of the discrepancy is identified in the theoreti- 
cal analysis presented herein as arising from small differences between molecular 
diffusivities of heat and reactants. 

The experimental conditions correspond to a mean-flow velocity uT (ahead of the 
flame) of about 20 cm/s, a turbulence intensity (@)t/u, of about 8 yo and an integral 
scale L, of about 1 cm. This results in low frequencies (Suu(v) -N 0 unless v < 20 Hz) 
and in an observed turbulent-flame thickness d ,  that remains constant a t  about 
0.2 cm. The average flame position is oriented perpendicular to the mean flow, as 
suggested by Williams (1970). Details of the experiment have been described by 
Sabathier (1980). Since the laminar flame thickness d is about 0.05 cm, the parameter 
e = d / L ,  is small, consistent with the gradient expansion proposed by Clavin 
(1979) and employed by Clavin & Williams (1979). Under these conditions, the 
experimental results shown in figure 1 may be described by stating that the flame 
behaves as a high-pass filter. This is unusual in physical systems; the flamelets might 
be expected to follow the gas motion a t  low frequencies but to lag a t  high frequencies, 
resulting in behaviour typical of a low-pass filter, with the power spectra agreeing 
a t  low frequencies but not a t  high frequencies. 

The phenomena operative to produce the observed behaviour clearly cannot be 
simple lag processes. It is possible to estimate the response time of a laminar flamelet 
as the transit time tL of a fluid element through the laminar flame. Since tL = d/u,, 
where the laminar flame speed uL is about 20 cm/s, the response time is roughly 
2.5 x s, which corresponds to a frequency between lo2 and lo3 Hz. Thus, flamelet 
lag may be expected to occur only a t  frequencies much higher than those of figure 1. 

That the explanation may reside in diffusive-thermal effects may be inferred from 
results of Barenblatt, Zel’dovich & Istratov (1962), who show that the characteristic 
time of relaxation t, associated with transverse diffusion mechanisms that govern 
laminar flame stability, the self-evolution time, is roughly A2/Dth, where A is a repre- 
sentative wavelength of the wrinkles and where Dth, the ratio of the thermal conduc- 
tivity to the product of the density with the specific heat a t  constant pressure, is the 
thermal diffusivity of the gas mixture. I n  the flame typically Dth = 1 cm2/s, and A 
may be expected to  be of the order of L,, about 1 cm. Hence t, is roughly of the order 
of i s, corresponding to a frequency of 1 Hz. This value lies in the centre of the range 
of frequencies over which the spectra in figure 1 disagree. Thus it is consistent to  
assume that the transverse diffusive mechanism of relaxation is responsible for the 
discrepancy in the observed spectra. I n  this view, the mechanism involves the self- 
evolution of the flame front, wrinkled without time delay by the turbulent flow. When 
the characteristic evolution time t ,  of the turbulent flow is much shorter than t,, the 
transverse diffusion mechanism is hidden by the forced movement of the front induced 
by the turbulent flow, but when t, > t,, corresponding to the low-frequency range in 
figure 1 ,  v < tE1, the self-evolutionary movement of the wrinkled front cannot be 
neglected and in the stable regime tends to reduce the motion of the front in com- 
parison with the driving motion of the turbulence. 

9-2 
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The theory developed in the present paper indicates that this transverse diffusive 
mechanism of relaxation remains efficient at low frequencies even when the convective 
phenomena produced by the expansion of gases through the flame thickness are taken 
into account. This theory also provides quantitative predictions of the phenomenon 
just described, in qualitative agreement with the recent experimental data of Boyer, 
Clavin & Sabathier (1981). 

2. Formulation 
The diffusive-thermal model of flame motion as originally proposed by Barenblatt, 

Zel’dovich & Istratov ( 1962) excluded density variations, thereby uncoupling the 
continuity and momentum-conservation equations from the equations of species and 
energy conservation, which then govern the flame dynamics. This serves the useful pur- 
pose of retaining the diffusive effects while eliminating hydrodynamic instability (Lan- 
dau 1944), which perhaps does not play an important role in experiments. Recently, 
extensive development of this diffusive-thermal model has been based on asymptotic 
expansions for large values of the non-dimensional activation temperature and has 
led to clarification of diffusive-instability mechanisms of premixed flames (Sivashinsky 
1977a; Joulin & Clavin 1979; Joulin 1979; Garcia-Ybarra & Clavin 1981). Some 
mathematical justification for the adoption of this model has been given by Matkowsky 
& Sivashinsky (1979), who analysed the double limit, /3 = Ta(Tf-To)/T,2 -+ m and 
y = (Tf-To)/Tf --f 0, where Ta is the activation temperature, Tf the adiabatic flame 
temperature and To the initial temperature of the fresh mixture. The non-dimensional 
activation energy /3 and the non-dimensional heat release y are significant parameters 
in flame propagation. The turbulent-flame studies of Clavin & Williams (1979, 1981) 
also concern the limit /3 + co, y j .  0. I n  the present work, the realistic limit /3 -+ m is 
retained, but the troubling approximation y + 0 is no longer necessary because of 
simplifications that result from the restriction to low turbulence intensities. On 
purpose, effects of hydrodynamic instability are still not investigated ; i.e. far-field 
modifications of the flow, produced by flame movement, are not considered. The 
results concerning flame behaviour differ quantitatively but not qualitatively from 
those obtained by a parallel analysis in which y --f 0. 

More-detailed discussion of influences of having y + 0 seems warranted here. Gas 
expansion that occurs through the wrinkled laminar flame when y is non-zero produces 
transverse convection effects, beyond those present when y = 0, that modify the mass 
and heat balances within the thickness of the turbulent flame. These influences, and 
the associated modifications to the turbulent velocity field within and across the 
turbulent flame, ai-e the main differences obtained herein from results for the limit 
y --f 0. I n  the present work, the velocity field just ahead of the wrinkled flame is 
considered to be given. Landau (1944) showed that when y + 0 incompressible effects 
in the far field ahead of and behind the flame modify the velocity field ahead of the 
flame front. Sivashinsky (19773) gave an equation for evolution of a flame front in a 
uniform flow for small y ,  including a proposed form for this hydrodynamical modifi- 
cation. Although such modifications are not considered herein, the present formulation 
may provide a starting point for improved analyses of the hydrodynamical phenomena. 
The approach would be to  include the associated far-field modifications to the velocity 
field just ahead of the wrinkled flame. Such an analysis is performed by Pel& & 
Clavin (1982) for the stability of planar fronts. However, even in the absence of this 
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extension of the theory, the present analysis provides relationships among experi- 
mentally measurable quantities, such as those shown in figure I corresponding to 
stable fronts. 

Following Clavin & Williams (1979, 1881), attention will continue to be restricted 
to exothermic reactions amenable to a one-step approximation, with the degree of 
progress describable in terms of the mass fraction Y, of a single reactant, taken to be 
a limiting or deficient reactant in the sense that YA = 0 defines completion of the 
reaction. An Arrhenius rate is adopted in the generalized sense described by Clavin & 
Williams (1979), such that a s p  4 00 the chemistry is confined to a fluctuating surface, 
termed the flame sheet or reaction zone, whose position is employed to define the 
origin of a moving co-ordinate system. With the density p variable, the mass-based 
thermal diffusivity pD,, is assumed to be constant and is used in conjunction with the 
constant upstream density pa and the mass burning rate pouL of the steady, planar, 
laminar flame for forming non-dimensional space and time variables x ,  y, z and t. 
Thus, d = pD,,/pauL and t ,  = pD,,/p,ui are the units of length and time, respec- 
tively. The co-ordinates are selected so that the turbulence will be stationary in t and 
homogeneous in y and 2,  with the average flow in the positive x-direction. The location 
of the flame sheet will be defined by x = a(y,z ,  t ) ,  and the moving co-ordinates 
5 = x-a, 7 = y, 6 = z, r = t are introduced. Subscript notation will be employed for 
partial derivatives of a.  

The conservation equations to be written in the moving co-ordinates are those for 
mass, momentum, energy and reactant. These involve the components of velocity in 
the (x, y, 2)-co-ordinate system, denoted by U ,  v and w, respectively, after non- 
dimensionalization through division by uL. Let r = p/po be the density ratio, v = (v, w) 
represent the transverse velocity, V denote the transverse gradient (involving differen- 
tiation with respect to y and z )  and 

s = r (U-a , - v .Va)  (1) 

identify the non-dimensional longitudinal mass flux in the moving frame. Then con- 
tinuity becomes 

( 2 )  

Conservation of momentum is employed under the assumptions that the coefficient 
of shear viscosity ,u and the coefficient of bulk viscosity u are constant. Constant 
Prandtl numbers, based on the first and second coefficients of viscosity, respectively, 
may then be defined as P = ,u/pD,, and P' = (Q,u + u)/pD,,. A constant representative 
Mach number is M = ( p o u ~ / p o ) * ,  where the constant pressure p a  is the mean pressure 
far upstream. The non-dimensional pressure, the ratio of the pressure to po,  will be 
denoted by 1 + M2p. I n  the moving frame the longitudinal component of momentum 
conservation then becomes 

ar/a7 + asla[+ a ( r q a 7  + a(rw)/a< = 0. 

where 

au au a u  au 
r -  + (s + PV2a) - + rv - + rw- a7 a t  a7 86 

(3) 

(4) 



256 P. Clavin and F .  A .  Williams 

represents the three-dimensional Laplacian with the term - (V2a)  8/86 removed. One 
of the transverse components of momentum conservation is 

The other is similar. 
Energy conservation is written subject to  the assumption that M is small. The 

non-dimensional enthalpy or temperature variable 0 is defined as the departure of 
the thermal enthalpy from its inlet value, divided by the difference between the 
thermal enthalpy of the fully burnt gas and that of the fresh mixture. In  the moving 
frame, conservation of energy then becomes 

in which the last term describes the chemical production of heat. The variable Y in 
the function F is the normalized reactant concentration YA/YAo, where YAo is the 
value of YA in the gas far upstream. The Arrhenius form of F for a reaction of order n 
occurring in a mixture with constant specific heat is 

F(O,  Y) = pn+lYnexp{ -/3( 1 + O)/[l - y( 1 - O)]), (7) 

where y is the heat-release parameter defined previously (y  < 1). The factor AL is 
the constant laminar burning-rate eigenvalue, a number of order unity related to  a 
Damkohler number and defined in equation (4) of Clavin & Williams (1979). When 
F ( O , Y )  is given by (7)) it is assumed that the pre-exponential factor in the rate 
expression has a suit,able, weak, temperature and concentration dependence to make 
A, constant. The equation of state relates r to  p ,  0 and Y. When M is small and the 
specific heat and mean molecular weight are constant, this equation yields 

r = [ 1 + Oy/(  1 -?)]-I. (8) 

Equations (7) and (8) will be employed herein to  present explicit results in their 
simplest form, although it should be evident that the methods are not restricted to 
these particular rate and state formulas. 

I n  the equation for reactant conservation it is assumed that the Lewis number 
L = Dth/DA is constant. Here DA is the diffusion coefficient for species A in the 
mixture, this species being assumed to obey Fick’s law. I n  the moving co-ordinates, 
species conservation is 

I n  addition to the previously stated conditions of stationarity and homogeneity, 
there are boundary conditions a t  6 = -co (e.g. 0 = 0, Y = 1)  and a t  = co (e.g. 
0 = 1 ,  Y = 0). With specified turbulent fluctuations of velocity upstream, the prob- 
lem is expected to  possess a solution only for a particular value of the parameter 
m = uT/uL, where uT is the turbulent flame speed. I n  terms of quantities defined 
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previously, m is the average value of U or of rU for 6 3 -00. The primary objective 
will be to investigate properties of the function a and to  find m. The diffusive-thermal 
model ( y  -+ 0)  of turbulent combustion employed by Clavin & Williams (1979, 1981) 
is concerned with (6) and (9),  with r and s treated as constants. I n  the present approach, 
although y is not small, attent.ion is focused on flows in which r remains constant in 
the upstream turbulence. 

3. Analytical approach 
As /3 -+ 00, F becomes negligible except in a narrow reaction zone centred at 6 = 0. 

Bush & Fendell (1970) showed how to handle the nonlinearity of F by means of an  
asymptotic expansion for p-+ co; the approach was reviewed by Williams (1971). 
Clavin & Williams (1979) employed such an approach for turbulent flames to remove 
the nonlinearity associated with F .  The same type of method is adopted herein, with 
the first two terms of the expansion in p-' retained. 

Moreover, the expansion L = 1 + .?/,I3 is introduced, with 1 assumed to be of order 
unity (cf. Joulin & Clavin 1979; Joulin 1979). Reasons for this restriction on the Lewis 
number have been discussed by Clavin & Williams (1981). An alternative view of the 
desirability of taking 1 of order unity, to address the problem identified in 5 1, is 
provided by Sivashinsky's ( 1977 a) first detailed analysis of laminar-flame stability. 
On the basis of a diffusive-thermal model he showed that, with the non-dimensionali- 
zations 7R = t,/t, and h = A/d, the characteristic non-dimensional relaxation time 
for transverse disturbances is 

7R = [l++(L--l)p]-lA2. (10) 

Thus, p(L - 1), i.e. I, controls the self-evolution mechanisms of the flame front, and 
to describe these mechanisms properly in an asymptotic development for /3 -+ 00 it 
is necessary to take 1 of order unity. I n  real gas mixtures L is near unity, nearer to 
unity than is P. 

According to (lo),  7R is negative for 1 < - 2; this corresponds to a regime of diffusive- 
thermal instability. It will be shown herein that for y + 0 effects of thermal expansion 
cause the critical value of 1 below which diffusive-thermal instability occurs to lie 
appreciably below - 2. Denoting this critical value by I*, we introduce the further 
restriction 1 > I * ,  so that the wrinkled flames considered will be stable diffusively to  
transverse disturbances. This condition holds for the particular combustible mixture 
to  which figure 1 applies; the experimental results differ in the unstable regime, 
identified by Pelc6 & Clavin (1982)) and these results require further study. 

Since the perturbation approach adopted here results in uT - uL < u,, the generally 
observed property Ll/tT = O(u,) of turbulent flows may be introduced into the 
present analysis by selecting the ordering &/tT = O(uL). This weak version of Taylor's 
hypothesis implies that  t,/tT = O(e). Since d/L, = a, this selection means that the 
large-scale turbulence under consideration also is slowly varying when measured on 
a time scale characteristic of the transit time through a laminar flame. The space 
and time variables appropriate to the upstream turbulence are X = ex, Y = ay, 
Z = ez and T = st. I n  anticipation that these properties of the upstream turbulence 
are reflected in the motion of the reaction zone, the function a will be written as 
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a( Y ,  2, T ) ,  where the notation indicates that a is assumed to  vary by relative amounts 
of order unity only over the long space and time scales L, and t,. 

Equation (10) suggests that to observe self-relaxation effects it is desirable to investi- 
gate changes on time scales large compared with t,. Specifically, with A of order L,, 
h is of order l / ~ ,  and therefore (10) implies that 7R is O(1/~2).  Hence, in addition to 
turbulent changes on a non-dimensional time scale such that st is O( 1))  self-evolutionary 
changes, on a non-dimensional time scale such that E2t  is 0(1), may be expected to 
occur. This suggests that a two-time approach is relevant, with a being taken to 
depend on four variables, a = a( Y ,  2, T, &). Although a two-time analysis can pro- 
duce the results to be derived herein, variations on the longer time scale c 2 t L  are 
simple enough to  be obtained from a one-time analysis by carrying the analysis to 
higher order in E and then resumming. Therefore, for simplicity in presentation, a 
one-time approach is employed, and a( Y ,  2, T )  is sought. 

As y -+ 0, U approaches m + u, where u is the non-dimensional longitudinal velocity 
fluctuation of the upstream flow, having a time-average or ensemble-average value 
ii of zero. The result obtained by Clavin & Williams (1979) to lowest order in E may 
be written as a, = Judt  = a. This result remains valid here for the dominant term 
as y -+ 0 and dictates an ordering for the velocity field. Specifically, to retain the 
relaxation effects described by ( lo) ,  in such a manner that they are not hidden by 
geometrical effects of flame wrinkling, it is desirable to  consider situations in which 
a is O(1); i.e. in which flame displacements are of the same order of magnitude as 
the laminar-flame thickness. Since t = T / E ,  this implies that u is O ( E )  ; thus attention 
is to be focused on weak turbulence. 

This reasoning may be extended to  conditions under which y $. 0. As a consequence 
of gas expansion, 0 is no longer constant. Across the wrinkled laminar flame, U 
must change by an amount of order unity. This change will be taken into account by 
a function uo(c) that approaches m,, the first approximation to  m, as 5 approaches 
-m. Weak turbulence will be described by allowing U to differ from uo(t) by an 
amount of order E .  

The corrections of order E may be expressed in a variety of different ways. A con- 
venient way may be discussed by excluding hydrodynamic instabilities a t  first and 
considering the fluctuating velocity field that would be present if there were no flame. 
Denote the non-dimensional streamwise component of this fluctuating velocity by 
EU-,(X, Y , Z , T ) ,  where u-, is taken to be O(1). The average taken with X fixed is 
u-, = 0, but u?, decreases with increasing X through decay of turbulence, over a 
very long distance scale such that the change in x is O( 1/c2). Changes taking place on 
this scale of decay are not considered herein. The result, of Clavin & Williams (1979), 
to lowest order in E ,  with y -+ 0, may equally well be written as 

- - 

The presence of the flame will modify the fluctuating velocity further. The correc- 
tion to the formula U = uo +EU-, will be assumed to be O(E) as a consequence of 
weak wrinkling and small intensity, and it will be written as EU, + e2u2 + . , . , where 
u,, u2, . . . are O(1). It is relevant to consider over what dist,ance scale in the streamwise 
direction ul, u2, . . . may vary. Variations are anticipated on a scale such that changes 
in 6 are O( l ) ,  as a consequence of passage of the turbulence through the flame. I n  
addition, variations on a longer scale such that changes in €5 are O(1) may occur as 
a consequence of interaction of the flame-induced modificat'ions with the turbulent 
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field. To indicate this two-scale dependence, u1 will be written as ul(<, S, Y ,  2, T), 
where E = c:t. When incompressible effects in the incoming gas flow produced by the 
wrinkling of the front are neglected, to the order to which the analysis is carried, i t  is 
found that variations over the larger longitudinal scale occur only downstream from 
the wrinkled flame. Therefore, although the method of multiple scales is needed in 
general in analysing ul, upstream from the flame there is no change on the longer 
distance scale in the present analysis. 

The absence of upstream variations of u1 on a scale such that changes in Z are O( 1) 
implies that if 6 is set equal to zero in the variable X = e( [+ct )  = E+sa, then 
eu-,(X, Y ,  2, T) represents the non-dimensional fluctuation of longitudinal velocity 
just ahead of the wrinkled flame. Therefore uj($, S, Y ,  2, T )  = mi a t  6 = - ~0 is to be 
imposed as a boundary condition on u3 (j = 1 , 2 , .  . .), where the constants mi in the 
expansion m = m,, + ernl + e2m2 + . . . of the non-dimensional turbulent flame speed 
are to be determined in the course of the analysis. As indicated above, u-, may be 
treated as given, in the absence of hydrodynamical effects. If hydrodynamical phe- 
nomena occur, then, a t  5 = 0, u-, is still to be interpreted as the non-dimensional 
fluctuation of longitudinal velocity just ahead of the wrinkled flame, with the same 
boundary condition on ui being imposed, but characteristics of u-, are no longer 
known from properties of non-reacting grid turbulence. Since the dispersion relation 
of Landau (1944), analogous to (lo), shows that the non-dimensional hydrodynamical 
time tH/tL is proportional to A, with attention restricted to time scales such that T 
is of order unity the hydrodynamical phenomena may be expected to  occur on distance 
scales such that E is O( 1) .  As stated in 3 2, although these hydrodynamical aspects 
are not analysed herein, the analysis is consistent irrespective of their presence, u-, 
being treated as given but possibly containing hydrodynamical modifications which 
can be investigated in further studies along the lines of the recent work of Pelc6 & 
Clavin (1  982). 

An alternative way to express corrections to  U of order c: would be, for example, to 
treat the fluctuating velocity just downstream from the wrinkled flame as given. 
Although there would be no logical inconsistency in adopting this alternative or others, 
the greater ease of measuring velocity fluctuations upstream and their closer relation- 
ship to properties of non-reacting grid turbulence suggest that the approach adopted 
herein may be more convenient. 

Although in many problems properties will vary importantly on both longitudinal 
distance scales, the results obtained herein may be derived without making use of the 
method of multiple scales. This is demonstrated in appendix B, where an analysis 
paralleling that of Clavin & Williams (1979, 1981) is outlined. Often developments are 
less time-consuming if multiple-scale methods can be avoided. However, for the 
present problem complexities of the two-scale approach at  lower orders in e are over- 
balanced by relative simplifications that arise at higher orders. Therefore, overall the 
two-scale method is not appreciably more complicated for the present purpose, even 
though it involves more elaborate notation and a greater number of equations. 
Partially because of this simplification, but more importantly because the method 
establishes the basis for further analyses of phenomena such as inviscid effects in the 
far field and higher-order effects of flame curvature on flame-front evolution, the two- 
scale method will be presented in the main text. Through the variable E this method 
provides a resummation of the expansion in e that may lead systematically to a non- 
linear equation for evolution of the flame front. 



U = u o ( 5 , ~ , Y , Z , T ) + E U _ , ( X ,  Y,Z,T)+€U&,E,  Y , Z , T ) +  ..., 
v = ev-JX, Y ,  2, T) +sv,(<, E, Y ,  2, T) + . . . , 
P = Po(<, E, y ,  2, T) + .P-,(X, y ,  2, T) + %(<, E, y ,  2, T) + . . *  , 
0 = Qo(<, E, Y ,  2, T) +eQ1((, 3, Y ,  2, T) +. . . , 
Y = Yo((, E, Y ,  2, T) +EY1(<, E, Y ,  2, T) + . . . , 

which provides the turbulent flame speed and the flame-sheet motion for arbitrary 
turbulence intensities under conditions such that gradients are sufficiently weak for 
the local structure of the wrinkled flame to coincide with that of a planar laminar flame 
and for the local normal to the flame sheet not to approach a perpendicular to the 
mean-flow direction. In  (12), uI,=, and vI,=, denote the fluctuating parts of the 
longitudinal- and transverse-velocity fields, respectively, evaluated just upstream 
from the wrinkled flame, as indicated in appendix A. The geometrical effects con- 
tained in the results derived in the main body of the paper correspond to an expansion 
of (12) for small values of V a .  

Although scalings other than that in (11) can lead to the same results that are 
derived herein, the present selection simplifies the derivation of these results, especially 
concerning the transverse diffusive effects that involve the flame curvature V2a, a 
quantity that is seen to be O(e2) .  It may be inferred from (10) that these effects are 
important for flame relaxation and therefore for explaining the spectral discrepancy 
in figure 1 .  With the present scaling it is relatively easy to carry the analysis to order 
e2 to obtain these effects. Other scalings make it more difficult to retain such effects. 
An alternative development by Clavin & Williams (1981) did not introduce ( 1  1)  and 
contained no special restrictions concerning either the turbulent intensity or the 
characteristic time of the turbulence. With this greater generality, only the averaged 
equat,ions could be analysed conveniently a t  order e2, and transverse diffusive effects 
were not revealed. Since the approach of Clavin & Williams (1981) permits turbulent _ _  - 

) (11) 
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variations on non-dimensional time scales short compared with T, it can be useful for 
studying the high-frequency lags of flame response that occur on a characteristic 
time t ,  and that are hidden by the scalings adopted herein. However, it is not well- 
suited for investigation of the self-relaxation phenomena a t  low frequencies. There- 
fore, in a sense, the two approaches are complementary. 

4. Multiscale analysis 
An asymptotic expansion for p -+ 00 is performed prior to the development in e .  

AS is now well-known (e.g. Joulin & Clavin 1979; Clavin & Williams 1981), this pro- 
cedure involves introducing an inner reaction zone, having a stretched variable p(, 
and integrating the conservation equations across this zone to obtain through matching 
the jump conditions that are applied a t  6 = 0 in analysing reaction-free forms of the 
conservation equations on a distance scale such that 6 is O(1).  Since the analysis of 
the inner zone is lengthy, and parallels exactly that of Joulin & Clavin (1979), only 
the essential results are quoted here. Superscripts will identify orders of the expansion 
in p-l, e.g. 0 = O(0)+p-lO(l)+. . . . When the order of magnitude of transverse gra- 
dients is less than p, the reaction zone is quasiplanar and quasistatic, and the jump 
conditions obtained are 

o(o)15=o+ = o")15=o- = 1 ,  o(1)15*o+ = o(1)15=o- E u, 

Y'0)15=o+ = Y(o)Js=o- = 0, Y(1)J5=o+ = Y(1))5=o- = 0, 

ao(o)/ac15=o- = - aw)/a&o-  = (1 + IVal2)-4 eat, 
ao(1)/ag15=o- + a v y a t 1 5 = o -  - zay(o)/a<15=o- = aw) /aq ,= ,+ .  

(13) 

It may be noted that in (13) the new variable u = / 3 (T15=o-~) / (Tf -To)  has been 
introduced, measuring the departure of the local, instantaneous flame temperature 
from the adiabatic flame temperature; CT of course possess an €-expansion of the same 
form as a. 

Through (8), the conditions given here for 0 imply corresponding jump conditions 
for r .  Since (2) shows that s and its <-derivative are continuous, use of ( 1 )  results in 
jump conditions for U .  Since (3) and (5) do not contain t,he chemical production term 
F ,  the jump conditions relating p and v to U are obtained simply by integration 
over the inner zone; it is found that 

(14) 

The multiscale problem addressed is that of finding the outer solutions to (6) and 
(9), in the regions < 0 and 5 > 0 where F = 0, satisfying the jump conditions (13), 
as expansions in 6 with 6 and E treated as independent variables. Because of the effect.s 
of gas expansion it is necessary to treat simultaneously the associated fluid-mechanical 
problem defined by ( Z ) ,  (3) and (5) with the jump conditions (14). For brevity, the 
only aspects of the fluid-mechanical problem investigat,ed here are t,hose needed in 
solving (6) and (9).  
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Outside the reaction zone, to lowest order in E (1)-(9) yield the relationships 

written here in the order that they will be used. Making use of the isothermal, constant- 
composition conditions in the fresh mixture just ahead of the flame and of boundedness 
for 0, and Yo in the burnt gas, we find the solutions to the first three equations in (15) : 

The functions ro and u, are obtained from the fourth and fifth formulae in (15) by use 
of (16). The coefficients appearing in (16) may be functions of E. They also may 
depend upon Y ,  Z and T ,  but for brevity of notation these latter dependences are not 
exhibited explicitly in the present section. The dependence on 3 cannot be determined 
until the following order in E .  However, the first two lines of the jump conditions in (13) 
provide the relationships CdO'(0) = 1, BJO'(0) = 0 and Bdl)(0) = 0; the last line then 
gives Cdl)(0) = 0, and the third line then shows that X,(O)(O) = 1. 

Collecting terms of order < in (I) ,  (Z), (6)) (8) and (9) yields 

I 

where the expansion 

has beenrequired. The subscript X denotes a partial derivative, and a similar expansion 
will be needed later for v-,(X). Avoiding a secular growth for s1 in the range f < 0 
necessitates BS,/BE = 0 for E < 0, according to the first equation in (17); hence the 
condition SO(O'(0) = 1 gives XJO)(E) = 1 for Z < 0. Similar considerations of secular 
behaviour applied to the equations in (17)  for 6 > 0 lead to  the requirements that 

a ~ ,  as, aR, aR aB, aB, -+- = 0, R,-+SS,-o = 0, R -+So- = 0, 
aT aB aT a= O aT as 

in the range E > 0, where R, = [ 1 +Coy/(  1 -y)]-L. The system (19) requires X,/R, 
to be independent of 8, and admits general solutions that are functions of the single 
variable Z -I: (S,/R,) dT; application of the boundary conditions at Z - - - 0 stated 
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above then gives, for E > 0, C&O)(E) = 1, Cdl)(E) = 0, BdO)(Z) = 0, B$l)(E) = 0 and 
Sdo)(E) = 1. The result that Sdo)(E) = 1 everywhere corresponds to m, = 1, i s .  UT = UL 

at  the lowest order in E .  

With these results, integration of the first equation in (17) yields 

Since 0, and Y, cannot decrease to zero more slowly than 0, and Yo as 6 +--a 
(cf. Van Dyke 1964), the second and third equations of (17) split into two independent 
parts for 6 < 0, giving 

along with two other differential equations evident from (17). For $ > 0, (16) and 
(19) show that (21) is again obtained from the second and third equations of (17),  
this t,ime with no additional differential equations implied. The solutions to  (21) 
satisfying the upstream and downstream boundary conditions are 

where the first two lines of (13) imply that C$O)(O) = B$O)(O) = B$l)(O) = 0. The first of 
the additional differential equations obtained from (17) for 6 < 0 may be shown by 
use of (16) and (20) to reduce to S,aC,/aE = S,SIC,+aC,/aT, and the second may 
then be shown to require that B, = 1 - C,L for E < 0. Although Sl(S) must be known 
before this differential equation can be solved, the previously derived conditions 
Cdo)(0) = Sdo)(0) = 1 yield aCdO)/aE,l==, - = SjO'(0) from the equation. A proper multiscale 
development of the fourth line of (13) in powers of 6 then shows that Cjl)(0) = 0, 
which leads to S$O)(O) = 0 by use of the third line of (13). Use of ( 1 )  and (11) in (20) 
for 6 -+ - 00 gives S,(E) = u-,(E) + m, - aOT, whence SjO)(O) = 0 yields ah$ = u-,(O) + 
mio), the time average of which shows that mjo) = O.Thus there is no correction to the 
turbulent flame speed a t  order 6 ,  and we have SiO)(E) = U-,(E)--U-~(O) for E < 0 
and ah? = u-,(O), in agreement with previous results (Clavin & Williams 1979). 
Obtaining more information concerning dynamical properties of the flame front 
necessitates considering alT by proceeding to order e2. 

Collecting terms of order c2 in (2) and (9) yields 

ar, as as 
- + -2 + -2 + v . (.,[vl + v-p(E)]) = 0, 
aT a s  ag (23) 

where $, an operator of order unity, denotes the transverse gradient involving differen- 
tiat,ion with respect to Y and 2. The terms of order e2 in (6) provide an equation for 
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0, that can be obtained from (24) by replacing Y by 0 and L by unity. Since (23) and 
(24) involve vl, it becomes necessary to investigate (5) a t  order E ,  viz 

where u, and p ,  are obtained from the last three equations of (15) by use of (14), (16) 
and previously stated relationships for So, C, and B,. It is found that 

there being a discontinuity of pressure across the reaction zone to balance the dis- 
continuity of the normal viscous stress in (14). The solution to (25) for < c 0 that 
satisfies the upstream boundary condition is 

5 
v1 = (?a,) (m, - uo) - QJ [mo - uo(<f)l d<' + ecsoip v1(s), (27 1 

-m 

where Vl(E) is to be .determined by considerations of secular behaviour at order e2. 
For 5 > 0, (25) with (26) shows that v, must be independent of < to avoid a secular 
growth, and we choose to write the solution for f > 0 as v1 = Vl(E) - @a,) so/(l - y ) ,  
so that Vl(E) will be continuous a t  E = 0. The jump condition obtained from the 
expansion of (14) for the normal derivative of v1 then reduces to  Vio)(0) = 0. 

Having thus obtained a sufficient amount of information concerning vl, we may 
proceed to consider solving (23) and (24). Differentiation of the relation for Sl(E), 
obtained after (22), shows that aSl/aB = u-=#), which equals - 6. v-,(E) by 
continuity in the undisturbed flow. Therefore for 6 < 0 there is no secular term in (23), 
and integration from - co to 5, with use of (20), (27) and the next-to-last equationsin 
(15) and in (17), results in a long but explicit expression for sz that involves an un- 
determined function S2(E) as a constant of integration with the property that sz 
approaches S2(E) as f --f - co. Evaluation of this expression a t  E = 0, with the aid of 
(16), (22), the fourth equation in (15) and previously derived conditions at E = 0 for 
the functions that vary only on the longer distance scale, gives 

valid to order p-1. The same kind of splitting that led to (21) applies to (24) and gives, 
for E = 0 and 5 < 0, 

as well as SOaBl/aE = LS, (Sol $a,l - 8,) - S,$2a0 - LS? - L-W,/iWB. Replacing Y 
by 0, B by C ,  and L by unity reduces these equations to those obtained for temperature 
from (6).  Differentiation of earlier results for B, and C, shows that 

a ~ , / a ~  = - L[u-,, + s: + s,pas,/a~]- L(L - 1) (ac,/aq2 
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and a2C,/aE2 = uvmx + SZ, + S,%S',/BT, which may be used to simplify the equations 
split on the longer scale, thereby providing expressions for aBl/85 and aC,/aZ, 
evaluated at 5 = 0. Integration of (29) from 6 = - co to 6 = 0 provides a relationship 
between values and slopes a t  6 = 0-  for Y,; a corresponding relationship for 0, is 
obtained similarly. These relationships may be used in the expansion to order e2 of 
the last jump condition in (13) to obtain u,. This entails employing Y1 = O1 = 0 for 
5 > 0 to  the first two orders in ,&-I, a result obtained from (24) and from the corres- 
ponding equation for 0, by a procedure paralleling that involving (19). The formula 
for u, is found t,o be 

after the previously derived results that ,"hO)(O) = 1 and ,"ho)(O) = 0 are reintroduced. 
Equation (30) defines a departure of the non-dimensional flame temperature from its 
adiabatic value by an amount of order e2. This result is equivalent to  (B 20)) in view 
of (B 11). 

The third line of the jump condition (13), extended to  order e2, gives 

(31) 
1 

SZ(O)(O) = [ u - m x ( ~ )  - @a~o)]- In ( - ) +&,+4eadO)l? 
Y 1-7 

8 ( 0 ) ( 0 )  2 = rnZ(0) -a$$ - V . [~(,$O)v-~(o)], 

Use of (1) and of the formula for s2 in the limit f [  -+ - co yields 
A 

where (2) and (18) have been employed. Substitution of (30) and (31) into this formula 
provides us with the equation of evolution of the flame front to order c2, viz 

alT = m,-~~~a,~2-~.[aOV~,(0)] 

- [uL,x(O) - t2a0]  [$In (L) + $I ( y)  /:"" x-l In (1 + x) dx] , (32) 
1-Y 

where the superscript (0) has been left out for brevity. Equation (32) describes the de- 
parture of the motion of the fluctuating flame from the fluctuating motion of the gas 
in the fresh mixture. The significance of (32) will be discussed in $5.  Equations (B 10) 
and (B 11) show that (32) is the same as (B 21). 

I n  view of transverse homogeneity, the time average of (32) yields m2 = *IVa,12, 
which may be written as e2m2 = + I V E , ~ ~ .  Since in the expansion 

A 

m = m,+&ml+s2m,+ ... 
it was found previously that m, = 1 and m, = 0, this result shows that the turbulent 
flame speed exceeds the laminar flame speed by the fractional amount +JVa,)2, of 
order e2. This flame-speed correction, also found in (B 22), is merely the first non- 
vanishing correction term in the low-intensity expansion of the purely geometrical 
effect given by (A 7) .  Therefore local modifications to structures of laminar flamelets 
do not influence the turbulent flame speed a t  order e2; only the effect of area increase 
associated with flame wrinkling appears. To obtain the first non-geometrical correc- 
tions to m, the analysis must be carried to order e4. This higher-order analysis has been 
completed only for y = 0, only for averaged quantities and under the assumption 
that the stochastic process is stationary as well as homogeneous in transverse diree- 
tions. Some of the details are given in appendix C. At order €3 only a further geometrical 
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effect appears, which can be obtained by expansion of (A 7).  At order e4, additional 
structural effects enter. The results through order e4 are consistent with the summary 
formula 

which applies to the purely diffusive model obtained in the limit in which y vanishes. 
I n  connection with possible future applications of t,he multiscale method, it is of 

interest to remark that the last equation of (13) provides the expansion in E of the 
local instantaneous temperature r of the flame independently of the third line of 
(13), which can be used afterward to obtain a resummed form of an equation for 
evolution of the flame front. Pursuit of this line of investigat,ion toward obtaining a 
nonlinear evolution equation may shed more light on phenomena of local quenching 
of the flame by stretch, discussed in the following section. The quantity So and the 
time derivative of 8, were retained in the developments leading to (28) and (29) to 
provide a starting point for this further analysis. 

m = [ I +  I V ~ ~ ~ I ~ - Z ( ~ + ~ Z ) [ € U _ , ~ ( O ) - V ~ C ~ ] ~ ,  (33) 

5. Motion of the flame front 
The result aOT = uJ0) describes a flame front that  moves with the streamwise 

Eulerian displacement of the turbulence. The correction to this provided by (32) 
includes a number of new physical phenomena that cause the fluctuating motion of 
the flame to depart from that of the gas. The first three terms on the right-hand side 
of (32) describe approximations to the kinematic effects summarized by (12) and 
discussed in appendix A. The identity 9 .  [a,v-,(O)] = v-,(O) . ~ a , - a , ~ - , ~ ( O )  aids 
in revealing this correspondence. The term ea,u-,,(O) is an approximation to 
u(,=, - U I , , ~  and therefore arises from exparxion of the first term in the expression 
(12) for a,; it accounts for the fact that the fluctuating velocity a t  the flame is not 
exactly that a t  z = 0. The term ev-,(O) . $ao is an approximation to  the second term 
in (12),  accounting for transverse convection into a tilted flame element. The first 
two terms in (32) represent an expansion of the last two in ( l a ) ,  describing influences 
of area increase. The remaining terms in (32) represent influences of turbulent modi- 
fications to the structure of the wrinkled laminar flame and are not contained in (12). 

Consider first the limit y --f 0 in which effects of gas expansion through the laminar 
flame are absent. In  this limit the additional terms in (32) reduce to 

- (1 + *Z) [u-,x (0) -62a0]. 
Here u - , ~  = - 6 .  v-, makes it clear that the first term in the brackets describes an 
influence of flame stretch of the type analysed by Eckhaus ( 1  961), Klimov (1963) and 
Sivashinsky (1976). This effect has also been investigated by Joulin (1979) within 
the context of the expansion L = I +P-lZ for steady flames in stagnation-point flows. 
It is found (Sivashinsky 1976) that, in the appropriate range of values of I, sufficiently 
strong stretch can produce extinction even under adiabatic conditions and that for 
weak stretch the stretch effects are proportional to  I + $Z. The term - ( 1  + $Z) U _ , ~ ( O )  
in (32) is an unsteady, multidimensional version of the weak-stretch effect. This acts 
on alT in an additive manner with (1 + $1) V2ao ,  the diffusional effect of transverse 
curvature on flame motion, sought to explain the experimental observations discussed 
in 0 1 .  The occurrence of these phenomena in (32) suggests that the present analysis 
may be a good starting point for further investigation of stretch and curvature effects 
on flame-front motion. 

A 
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The factor 1 + $1 is the well-known bifurcation parameter that arises in analyses of 
diffusive-thermal stability of laminar flames (Joulin & Clavin 1979). Planar flames 
are diffusively unstable if this parameter is negative, as may readily be, inferred from 
a linearized simplification to (32). Specifically, writing aIT = ( 1  + $1) V2a, and then 
disregarding ordering, it is seen that, if 1 + 81 is negative, then a positive curvature 
implies a negative at and therefore a tendency for the curvature to increase further 
with time. Thus, it is evident that (32) effectively retains the property of instability 
for negative values of the bifurcation parameter and should not be presumed to 
describe turbulent flames under conditions of instability. 

Analyses of diffusive-thermal instability have been completed only for the limit 
y -+ 0. Equation (32) implies that for y + 0 effects of gas expansion will modify the 
bifurcation parameter; 1 + +1 is replaced by the quantity in the last square brackets 
of (32). Since 7-1 In ( 1 - y)-1 is an increasing function of y that approaches infinity as 
y approaches unity, it is seen that for 1 = 0 the characteristic relaxation time decreases 
as y increases; gas expansion quickens the recovery of the stable flame from a condition 
of distortion. A typical value of y for a real flame is 0.85, and the corresponding factor 
for enhancement of the relaxation rate is 2.2 for 1 = 0. If y becomes too close to unity, 
then the assumption that flame-front motion occurs on a time scale such that changes 
in et are of order unity wilI no longer be correct, and a revision of the scaling adopted 
herein will be needed. 

There is also a modification of the critical value of 1 below which instability occurs. 
From (32), (B 10) and (B 11) it is seen that this critical value is given by 

- (48/7r2) In 2 = - 3.37 ( y  = g), 
= \-4[(i-y)ln(&)]- '+... (y- f  1). 

(34) 

This result shows that 1" decreases from - 2 as y increases, approaching - co as y 
approaches unity. Thus, effects of gas expansion can significantly decrease the critical 
value of the Lewis number below which diffusive-thermal instability occurs. This 
effect arises from the fact that the factor multiplying 1 in (32) is a decreasing function 
of y .  For realistic values of y ,  the decrease of 1* below - 2 is substantial; for example 
for y > 0.8, I* < - 10, which causes 1 > I* for most combustible mixtures, possibly 
excluding those having hydrogen as fuel. Therefore, existing studies of cellular 
flames deserve re-evaluation with respect to possible influences of gas expansion ; 
Pelc6 & Clavin (1982) give a relevant analysis. The growth rates of instabilities in 
diffusively unstable regimes are reduced by effects of gas expansion. 

A composite equation for evolution of a flame front in a turbulent flow may be written 
by resumming the results that have been derived, including the findings of (12) and 
(32). The result may be expressed in the notation of (12) as 

where 1" is given by (34), and m is given by (12). For y = 0, (33) might be used instead 
of (12) for m in (35), wit,h ~ U - ~ ~ ~ ( O )  replaced by uZlz=,, although there would then be 
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a,n inconsistency in that the difference between (33) and (12) is a term of order e4, 
while elsewhere in (35) only terms up to order €2 have been retained. By the same re- 
identification, (30) for the flame temperature may be written as 

I n  these formulas, lengths, times and velocities are non-dimensionalized by the laminar- 
flame values, and u and v are functionals of a. 

Equation (35) may be proposed as a nonlinear equation describing the motion of 
the flame front in a non-uniform velocity field. It therefore deserves comparison with 
the earlier equation for flame-front evolution proposed by Sivashinsky (1977 b) .  Since 
the earlier work contained neither the effects of non-uniform velocities nor the effects 
of gas expansion, the dependences on u, v and y in (35) are not present in earlier work. 
Sivashinsky (19773)  included a term representing an approximation to the effect of 
hydrodynamic instability, but no such term appears in (35) since these effects have 
been ignored herein, as previously discussed.t It is generally recognized that the earlier 
approximation 1 + Val to the geometrical term [ 1 + \Val 2]4 becomes inaccurate as 
(Val2 increases. Finally, a term -V4a should appear on the right-hand side of (35), 
according to Sivashinsky (1977b). I n  stability analyses of laminar flames this 
term is responsible for the occurrence of stability a t  short wavelengths even when 
1 < I " .  The term would have arisen in the present analysis if the expansion had 
been carried fully to order e4. Therefore if (35) is to be employed as a general equa- 
tion, including descriptions of flapie evolution under diffusively unstable conditions, 
then -V4a must be added t o  the right-hand side. The modification of the coeffi- 
cient of -V4a by gas expansion remains to  be calculated. I n  stable situations 
this term is less important, but V2a in (35) remains significant a t  low frequencies, as 
will be seen when the predictions of (35) concerning figure 1 are discussed. 

It is anticipated that the assumption of low turbulence intensity is not essential to 
the major results obtained here, and can be removed by future work. Increased 
turbulent intensity is expected to produce purely kinematic nonlinearities of the type 
treated in appendix A and summarized in (12) .  On the other hand, the assumption of 
large-scale turbulence is critical, since the local structure of the wrinkled flame is 
strongly influenced by the ratio of the flame thickness to the turbulence scale. A 
promising avenue for future work is the inclusion of the nonlinearity responsible for 
the production of local quenching by flame stretch. An approach to this problem has 
been suggested a t  the end of 3 4. 

6. Flame temperature and turbulent flame speed 
Phenomena that cause the local, instantaneous flame temperature to differ from 

the adiabatic flame temperature T f  in the absence of heat losses (e.g. by radiation) 
to the surroundings appear in (36). Specifically, flame stretch u, and flame curvature 
V2a introduce departures of the flame temperature from Tf if L + 1. Positive stretch 

t Pel& & Clavin (1982) use the local relationship (35) t o  address the hydrodynamic problem, 
taking into account the modifications of u and v associated with the influence of combustion 
on the upstream flow when y f 0. 
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(i.e. negative u,) and positive curvature lead to an increased flame temperature if 
L < 1.  This is understandable, since each of these phenomena increases upstream 
gradients and thereby enhances reactant transport (i.e. heat release) to a greater 
extent than conductive energy transport if L < 1 .  Thus, (36) predicts a variation of 
flame temperature along the flame sheet for a wrinkled flame or for a planar flame in 
a strain field. 

Gas expansion reduces the sensitivity of flame temperature to stretch and curvature. 
This is seen from the fact that the y-dependence on the right-hand side of (36) is repre- 
sented by a decreasing function of y that goes from unity a t  y = 0 to zero a t  y = 1 ,  
as summarized in (B 11) .  A reduction in sensitivity by more than a factor of 2 may be 
expected for reasonable values of y .  It seems physically reasonable that, since gas 
expansion tends to lessen gradients, it may diminish the influence of stretch and 
curvature on the flame temperature. 

Associated with an increase in flame temperature is an increase in flame speed. 
Therefore the modifications to flame temperature in (36), produced diffusively as 
consequences of stretch and curvature, will be reflected in local modifications to the 
propagation velocity of the wrinkled laminar flame. The average of these flame-speed 
modifications provides an additive contribution to the turbulent flame speed. This 
contribution is given in (33) for y = 0,  under conditions of weak stretch and weak 
curvature. The mean square of the sum of the stretch and curvature terms appears 
in (33) because the averages of the linear terms vanish. It is for this reason that the 
analysis had to be carried to  order @ to obtain (33). Since gas expaneion reduces the 
effects of stretch and curvature on flame temperature, it seems likely that for y rt; 0 
the magnitude of the coeficient of ( U , I , = ~  - V 2 a ) 2  in (33) will decrease as y increases, 
approaching zero as y approaches unity. Markstein ( 1964) has properly interpreted 
V 2 a  - ~,1,=~ as the curvature of the flame with respect to that of the flow. 

From (33) it is seen that, for I > 0 (i.e. for L > 1) ,  these diffusivelyrelated effects of 
stretch and curvature provide a decrease of the turbulent flame speed below the 
value obtained by considering only the effect of the area increase of the wrinkled 
flame. On the other hand, for I < 0,  a condition that is encountered more often in 
practice, stretch and curvature contribute an increase to the turbulent flame speed. 
Since (33) is valid only for the stable regime, I > - 2 if y = 0, conclusions concerning 
influences of stretch and curvature in diffusively unstable situations cannot be drawn 
from (33). Sufficiently accurate measurements of turbulent flame speeds, to test the 
predictions of (33) with regard t.0 effects of stretch and curvature, are not yet available. 

7. Influence of the flame on the turbulence 
One result of the present analysis is a prediction of the change in the velocity field 

that occurs upon passage of the turbulence through the flame. This prediction is ob- 
tained from the results of the first-order analysis, given in the paragraph containing 
(27), or between (B 5) and (B 6).  Specifically, it is found that, through the wrinkled 
flamelet located at  6 = 0,  u1 = 0 and v, = ( 1  -u,)ta,. Thus, from ( l l ) ,  near the 
turbulent flame (X = 0 ) ,  

u = UO(5) +FU_,(O,  Y ,  2, T) + O(E2), 

v = €V-,(O, Y ,  2, T )  + [Va,( Y ,  2, T ) ]  [ l -  u0(5)] + O(e2) .  

(37) 

(38) 
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Ahead of the flame u, = 1, and behind uo = ( I  - y)-l. Thus, behind the flame the 
fluctuating components of the streamwise and transverse velocities are 

U L  €U-,(O, 1’) 2, T) 
and uI, C V - ~ ( O )  Y ,  2, T) - uL Va,( Y ,  2, T) y / (  1 - y ) ,  respectively, corresponding simply 
to flow-velocity deflections by the tilted elements of the flame sheet. 

These results show that the flame does not influence the longitudinal component 
of the fluctuating velocity; it merely produces a uniform increase in velocity, from 
uL to  uL( 1 - y ) ,  through gas expansion. On the other hand, the transverse velocity is 
modified as a consequence of passage of fluid elements through tilted elements of the 
flame sheet, if y + 0. As y approaches unity, this modification becomes large. The 
change in the transverse velocity is seen to exhibit no explicit dependence on the 
upstream transverse velocity but instead to be controlled by the transverse gradient 
of the streamwise Eulerian displacement upstream, a quantity dependent on the 
fluctuating longitudinal velocity. Thus, effects of gas expansion can alter turbulence 
properties downstream significantly. 

Let f2 and 8 denote the fluctuating longitudinal and transverse velocities just up- 
stream from the turbulent flame. Then the turbulent kinetic energy per unit mass 
upstream is q-, = +[az + 1812], and that just downstream is 

_ -  
_ -  

q m  = ~{&z+lo-(Va,)u,y/(l-y)12}. (39) 

When the gas expansion becomes large, y approaches unity and (39) becomes 
qm 2 +(Va,)2uE y2 / (  1 - Y ) ~ ,  which is large. Thus, for y near unity the flame produces 
a substantial increase in the turbulent kinetic energy per unit mass, this increase 
appearing entirely in transverse components of the fluctuations. Of course, in the 
opposite limit, y -+ 0, there is no change in q across the flame. It might appear from 
(39) that there is a possibility of a decrease in q if y is not too large. However, this 
seems unlikely since, in the cross term, 8 .  Va,  = &,a, by virtue of continuity and 
homogeneity in transverse directions, whence invocation - of an hypothesis of station- 
arity and a Taylor hypothesis gives 8 .  Va, = - QZ/uL. Thus, the cross-correlation 
that occurs in (39) appears to provide a further increase in q, not a tendency toward 
cancellation. If the preceding approximations and the first term in the expansion of 
(33) for small e are employed, then 

~- 

q m  - 9-m = (uT - uL) uLy2/(1 - r)2 + @Y/( 1 - 7) (40) 
is obtained as an approximate expression for the increase in q produced by the turbu- 
lent flame. Equation (40) may be useful for comparison with experiment in that i t  
contains quantities most readily measurable; all of the properties of uT discussed by 
Clavin & Williams (1979) are applicable in (40), to  the order to which - this expression 
holds true, and therefore under suitable assumptions (uT - uL) uL = ,ii2 in (40). 

The turbulent kinetic energy per unit volume is pq. This quantity may decrease 
when the turbulence passes through the flame because the density decreases. If the 
approximations of (40) are employed, then it is found that 

- -  
(PP)m - = [(uT -%) uLy2/(1 -7) - $ ~ ( ) 0 1 2 - f 2 z ) 1  PO, (41) 

which is negative for small values of y. However, as y approaches unity this quantity 
too becomes large and positive. 

Unlike these kinetic energies, the intensity of the turbulence relative to  the mean 
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velocity does not diverge as y approaches unity. The longitudinal 2 n d  transverse 
components of the rehtive intensity upstream may be defined as ($)&/8 and ( lolz)$/8, 
respectively, Khere 0 upstream is uL in the first approximation. Since the correspond- 
ing value of 8 downstream is uL/(l - y ) ,  the relative intensity for the streamwise 
component of velocity decreases in passage through the flame, its downstream value 
being (1 - y )  ($)*/uL. This aspect of the prediction is consistent with the concept 
of reduction in the relative turbulence intensity through dilatation. Similarly, with 
the approximation - of (40), the relative intensity in transverse fluctuations downstream 
is uZ1[ ( 1  - y ) 2  + 2@y( 1 - y )  + 2(u, - uL) uL yz]), which as y increases typically first 
decreases, then reaches a minimum value (at y = @/[2u1,(uT -uL)] if the turbulence 
is initially isotropic) and afterward increases, approaching, as y approaches unity, 
the value [2(u,-uL)/uL]*, equal to its initial value for conditions under which 
(uT - uL) uL = @'. Since these relative intensities remain bounded, the influence of 
the flame on the turbulence does not introduce any restrictions on the range of y 
for which the analysis may be applied without contradicting initial premises. 

Among the consequences of these results is the conclusion that initially isotropic 
turbulence will not be isotropic after passage through the flame. Transverse fluctua- 
tions are enhanced with respect to longitudinal fluctuations. For example, under the 
full set of approximations introduced above, the ratio of a transverse component of 
intensity to the longitudinal component is 

- 

downstream from the flame. This ratio increases with y and becomes infinite as y 
approaches unity. The increase in the turbulent kinetic energy may be viewed as a 
kind of flame-generated turbulence. However, such generation occurs entirely in 
transverse fluctuations, according to the present' results. 

8. Power spectrum of the flame velocity 
TO investigate the results shown in figure 1, it is helpful to take a Fourier transform 

of a. Let o and k be the non-dimensional frequency and transverse wavenumber 
vector, respectively, and let the tilde - denote the Fourier transform. To lowest 
order in E ,  (35) is xt = U I , = ~ .  The remaining terms on the right-hand side are 0 ( e 2 ) .  
For small e, all of these terms will be dominated by u/,=~, except the transverse- 
curvature term V2a, which will be seen to be relatively important a t  low frequencies. 
Note, for example, that for sufficiently small intensities the nonlinear terms tend to  
become negligible in comparison with Vza. Therefore only UI,,,, and the V2a term 
will be retained on the right-hand side. With the abbreviation 

the Fourier transform of (35 )  in time and in transverse spatial co-ordinates then 
becomes 

(iw + Kk2)  b(k, W )  = C(k, w ) .  (42) 

The non-dimensional space-time power spectrum of U I , = ~  may be defined as 
s,,(k, w )  = (C(k, w )  4*(k, w ) )  d k d w ,  where ( } denotes an ensemble average and * the 
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complex conjugate. Let s,,(k, w )  represent the corresponding spectrum of a,. Then 
(42 )  implies that  

The non-dimensional power spectrum in frequency alone, s,,((L)), is recovered from 
s,(k, 0) by s7,(w) = I s,,(k, w )  2nkdk, the integral being carried over the entire wave- 
number range of the spectrum. There will be a lower limit k,, for the absolute value 
of the non-dimensional transverse wavenumber below which the spectrum must vanish 
because of confinement of the flow by the walls of the apparatus. The value of k, will 
be of the order of the ratio of the laminar flame thickness d to the width d, of the duct 
in which the flame is studied. Use of (43 )  then provides the formula 

s,,(k, W )  = s,,,(k, 0) w 2 / ( w 2  + K 2 k 4 ) .  (43 )  

k d k  
O0 2nw2s,,(k, w )  

I k c  w2 + K2k4 
S,,(W) = ( 4 4 )  

for the non-dimensional spectrum of the flamelet velocity. 

appreciably from zero, then K Z k 4  may be neglected in the denominator, and 
From ( 4 4 )  it is seen that, if w 9 Kk2 for all values of k over which s,,(k, w )  differs 

saa(w) x SU,(@). 

This corresponds to the result of Clavin & Williams (1979) and agrees with figure 1 
at high frequencies. If the stated condition is not fulfilled, then K2k4 must be retained 
in the denominator, and the spectra of flame and gas velocities will differ. Since K2k4  
came from the V2a term describing diffusive relaxation, it is clear that  this phenome- 
non cannot be neglected a t  low frequencies. 

Even without a detailed knowledge of s, ,(k,w),  ( 4 4 )  provides t’he behaviour of 
s,,(w) a t  low frequencies. Since (1 + k4K2/w2)-l is a Lorentzian function of k2 with 
width w / K ,  if w is sufficiently small and if su,(k, w )  may be treated as approaching a 
finite, non-zero value as k approaches zero, then ( 4 4 )  yields 

This result relies on the approximation that the Lorentzian width is smaller than the 
characteristic wavenuxber over which s,,(k, w )  varies. Since the latter is expected 
to be determined by the integral scale L,, (45 )  needs ( w / K ) *  < d/L,. With d related 
to the transit time t ,  through the laminar flame by d = uLtL,  and with L, linked to 
the characteristic turbulence time t ,  by the Taylor-type hypothesis L, = uLtT, it is 
seen that in terms of the dimensional frequency v this restriction becomes v < Kt,/ t$.  
At these frequencies the variation of s,,(O,w) with w is not likely to be significant, 
since the range of v over which the major variation occurs is expected to  be of order 
l/tT. Hence, under the assumption that for practical purposes s,,(O, w )  approaches a 
finite, non-zero limit as w approaches zero, the function s,,(O, w )  should be replaced 
by the constant s,,(O, 0) in (45), within the accuracy of this equation. 

Two spectral subregimes may be identified from ( 4 5 ) .  At extremely low frequencies 
such that v < KD,,/d& the argument Kkz lw  is large, and (45 )  becomes approximately, 
in dimensional form, 

. .  

S,,(v) -N S,,(O, O)ndzv2/K2D&. ( 4 6 )  
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The quadratic dependence on v a t  small values of v predicted by (46) is consistent 
with the shape of the spectrum shown in figure 1. At larger values of v, such that 
KD,,/dE -g v -= KtL/t$, in (45) KkElw is small, and the dimensional result 

S,,(v) 21 X,,(O, 0 )  [n2v/2K D,, - n / d 3  (47) 

is obtained. The linear dependence in (47) agrees with the shape of the spectrum of 
flamelet velocity shown in figure 1 for v between roughly 0.5 and 2 Hz. Thus, it seems 
clear that (44) describes properly the observed spectrum Sid(v), at  least in a qualitative 
manner. Detailed quantitative comparisons would require knowledge of X,,(O, 0). 
However, S,,(O, 0) may be eliminated between (46) and (47) and a comparison sought 
on the basis of a relationship among curvature, slope and intercept of the spectrum 
Sdi(v). The comparisons performed thus far have been successful (Boyer et al. 1981). 

From (47) it is seen that the slope of the linear portion of the spectrum of flamelet 
velocity fluctuations depends on the bifurcation parameter, related to K ,  and the 
intercept depends on the cut-off wavelength d,. Quantitative information concerning 
both of these quantities may therefore be obtained from power spectra S,,(v). Existing 
data of Sabathier (1980) are useful for this purpose. Further measurements of the power 
spectra for different fuels would be of interest for obtaining additional information of 
this type. It would be particularly interesting to investigate the variation of the 
bifurcation parameter with gas composition in this way. For the existing experiments 
complications arise in accurate comparisons because the nonlinear terms of (35) are 
not entirely negligible. 

9. Concluding remarks 
Inclusion of fractional changes in density of order unity in the present analysis 

adds a considerable amount of confidence to the application of the results to real 
turbulent flames. However, it should be emphasized that taking y + 0 provided only 
quantitative modifications to the results concerning flamelet temperature and flamelet 
motion; no qualitatively new effects on these properties arose. This observation lends 
support to  the relevance of analyses concerned with the limit y -+ 0. Often the restric- 
tion y -+ 0 is helpful for simplifying studies of complex flows, and the present results 
suggest that useful information can be obtained on the basis of this approximation. 

The quantitative influences of y + 0 may be important in various respects. Parti- 
cularly notable are the quickening of the flamelet relaxation with increasing y for 
L = 1 and the reduction in the critical Lewis number below which diffusive-thermal 
instability occurs, as given by (34). The latter effect especially is associated strongly 
with the weakening of the influences of strain rate and flamelet curvature on the 
flamelet temperature as y increases. Quantitative effects of y += 0 may also be signi- 
ficant in extracting information from measurements of power spectra of flamelet 
velocities. 

CDnsideration of y + 0 enables predictions to be made of influences of the flame on 
the turbulence. It has been seen that the principal new phenomenon obtained is the 
enhancement of transverse-velocity fluctuations through effects of gas expansion in 
passage through the flame. Only relationships between quantities just upstream ( - 00) 

and just downstream (+a) of the turbulent flame brush have been calculated here. 
The hydrodynamical effects that occur in the far field both downstream and upstream 
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if y =/= 0 were not analysed. There are a number of reasons to believe that in most 
situations these effects will not produce strong modifications, but nevertheless it 
would be of interest t o  consider them further on the basis of the present approach. 

The analysis for small intensity and large scale is atypical in that proceeding to 
higher orders introduces a variety of new physical phenomena. It is necessary to 
include orders eo, el and e2 to obtain diffusive-thermal effects, and it is necessary to 
proceed to order e4 in the mean to calculate a nongeometrical correction to the turbulent 
flame speed. It is fortunate that the associated simplifications enable the expansion 
to be developed to such high orders. The most useful predictions, e.g. (35) and (36), 
are obtained after resumming the expansion. Improvement over the method of re- 
summing as applied to the solution may be offered by an approach based on the direct 
development of an expansion of the operator without obtaining the solution. More 
thorough use of existing multiple-scale methods, as well as further advances in such 
methods, would aid in pursuit of this promising approach. 

It would be of interest to carry the €-expansion fully to €4 and possibly farther, to 
8, in connection with instability questions. The analysis to order e4 would have the 
important contribution of properly placing the V4a term in (35). Consideration of 
order €6 would permit description of travelling-wave instabilities that have been 
found by traditional analyses to occur in certain ranges of L > 1 .  It would also be of 
interest to remove the small-gradient approximation while retaining the small- 
intensity approximation to investigate regimes in which the classical two-zone 
structure of the wrinkled flame may become invalid. It could be of even greater 
interest to  eliminate the small-intensity approximation but keep the small-gradient 
assumption with y =!= 0 to investigate diffusive-thermal effects (beyond the kinematic 
effects derived in appendix A) on the dynamics of wrinkled flames in flows with large 
velocity fluctuations. I n  particular, it  is known that sufficiently large flame stretch 
(strain rate) can produce local quenching of flamelets under suitable conditions even 
in the absence of heat loss. The nonlinearity would make the accurate inclusion of 
local quenching a difficult problem, but simplification may be achieved by addition 
of volumetric heat losses a t  a level sufficient to cause extinctions to occur in the regime 
of small stretch. 

Support for this work was provided by the United States Air Force Office of Scientific 
Research under Grant number AFOSR77-3362. We are indebted to G. Joulin, A. 
LifiAn and P. Pel& for useful discussions in connection with this research. 

Appendix A. Kinematic effects on flame motion 
The effects summarized in (12) may be derived by allowing eu-, and ev-, t o  be of 

order unity. Let u, and v, denote respectively the values of these quantities at  
X = ea. Then, with the time scaling of § 3, aOt = u, results in a being large 0(1/e),  
while at and V a  remain O(1). Only the dominant terms in the limit E + 0 are to be 
considered here, i.e. effects of flame structure are ignored completely. With the 
adopted scaling, (2) shows that asla[  is O(e), and therefore s may be treated as constant 
through the wrinkled laminar flame. By evaluating (1) just upstream from the flame, 
it is seen that this constant may be written as 

s = m+u,-a,-v,.Va. (A 1) 
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The only remaining conservation equations that need tcl be considered are (6) and (9)) 
which to  the dominant order in E become 

(A 2) 
sao/at - (1 + pay) azo/at - 1, 

saY/a[-L-l(l+ IVaI2)a2Y/i?t2 = -A,F.  I 
I n  the limit ,8 + co, F is negligibly small except in a narrow region centred a t  c = 0. 

Outside this zone for t > 0 ,  the bounded solutions are constants, independent of 5, 
and therefore the boundary conditions require that 0 = 1 and Y = 0 for 5 > 0. 
Analysis of the narrow region reaction in the manner of Clavin & Williams (1979) 
or of Joulin & Clavin (1979) then provides jump conditions that result in boundary 
conditions at = 0 for the linear, homogeneous equations obtained from (A 2) outside 
the reaction zone in the range 5 < 0, viz, 

@/,=,- = 1, YIg=,- = 0, ao/at/5,0- = (l+lvap)-a 

aY/ag5=o- = -L(l+ IVal2)-k 
and 

The solutions to the homogeneous equations for < 0 that satisfy the upstream 
boundaryconditionsare@=C,exp [st/(l+ lVa12)]andY = 1 -C,exp [Ls(/(l+ IVa12)], 
where C, and C, are constants. Applying the boundary conditions a t  t = 0 to  these 
solutions results in s = (1 + IVa12)$ and in 

for the normalized temperature and concentationr profiles in the moving frame. Use 
of this result for s in (A 1) then yields 

at-m = uU-v,.Va-(~+1Va12)+, (A 5) 

which has been quoted in (12). 
Upstream from the wrinkled flame, it is evident from (8) that r = 1; therefore, to 

the dominant order in E ,  U may be written as U = m + u(x, y, z, t )  in this upstream 
region, where u is O( 1) and (although not explicitly indicated in the notation) varies 
only on the long time and distance scales. Continuity in this constant-density region 
is u, = - V . v, where v(x, y, z, t )  is the transverse velocity ahead of the flame. From 
this condition it may readily be shown that 

(A 6) 

I n  (A 5 ) ,  clearly u, = uI,=, and v, = v,l,=;,, and therefore use of (A 6) on the right- 
hand side of (A 5 )  shows through homogeneity in the transverse directions, through 
a = 0 and through 
- 

= 0 that the average of (A 4) gives 

m = (1 + IVa12)i. (A 7) 
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Equation (A 7) also has been quoted in (12) .  
Equation [A 5) constitutes a nonlinear evolution equation valid for arbitrary in- 

tensity of turbulence if curvature effect)s remain weak enough for the local structure 
of the wrinkled flame to be unmodified by turbulence. This is consistent with the 
fact that the solutions given by (A 3) and (A 4) are the laminar solutions with the 
independent variable [/( 1 + IVa12)t. The geometrical stretching factor in the denomi- 
nator here arises merely from the tilting of the local normal to  the flame with respect 
to the direction of the mean flow. 

The first term on the right-hand side of (A 5 )  describes a process in which the flame 
front follows the displacement field of the velocity fluctuations a t  its instantaneous 
location and is thus subject to a mechanism of turbulent diffusion, discussed by Clavin 
& Williams (1979). This diffusion process differs from that of the ordinary Lagrangian 
displacement in that it involves only the longitudinal component of velocity and in 
that the front is not fixed to a fluid element but instead traverses fluid elements a t  
the constant laminar flame speed. Nevertheless, the streamwise Eulerian displace- 
ment is relevant to ct only for small displacement of the flame front; for large dieplace- 
ments proper description of the motion involves more of a Lagrangian character. 

The last two terms in (A 5 )  are nonlinear corrections associated with flame-front 
wrinkling. The v . V a  term arises from transverse convection into a tilted flame ele- 
ment, and the last term describes the effect of the increase in flame area. Neither of 
these terms involves the transverse diffusion processes studied in the main text. 
The average of the last term is the average fractional increase in area of the flame 
front and therefore provides the geometrical influence on the turbulent flame speed 
(A 7) ,  as discussed earlier (Clavin & Williams 1979, 1981). 

P. Clavin and F. A. Williams 

Appendix B. Solution to second order without introduction of multiple- 
scale method 

I n  place of (1 l), expansions may be adopted that do not involve use of the variable 
E. The modified developments are 

which are to be used along with the expansion 

and similar expansions for V-, and p-, .  The dependences on Y ,  Z and T will no 
longer be exhibited explicitly in the notation. 
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Outside the reaction zone, to lowest order in E (1)-(9) provide 
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\ 

so = roue, ds,/dt = 0, 

s,du,/dt = - dp,/dt + (P  + P') d2U, /dp ,  

SodOo/dt = d20,/dt2, 

Y o  = +@,7/(1 
sodYo/d( = L-ld2Y0/dt2,  

in the sequence shown. Since so is thus independent of <, it is seen that 

m, = so = 1, u, = l / r o ,  

The results in (B 4) are derived in the sequence listed in (B 4) by use of (B 3), boundary 
conditions and jump conditions. Note that the normalized temperature and compo- 
sition profiles possess the laminar solutions 0,(t) and Y&), in the moving frame. 
The solutions for ro, u, and p ,  also correspond to the laminar solutions, there being a 
discontinuity in p ,  across the reaction zone to balance the discontinuity of the normal 
viscous stress. Since m, = 1, clearly uT = uL to lowest order. 

Collecting terms of order 8 in (1)-(9) yields 

1 s1 = rl uo + r,[u-,( 0) + u1 - aOT], asl/a( = 0, 

aol/a& + S1dO0/dt = a2Ol/ap, r ,  = - ri 0 ,y / (  1 - 7)) 

ayl/ag+ S 1 d ~ , / d ~  = L-wuT,/ap. 
* 

Here V denotes the transverse gradient involving differentiation with respect to Y and 
2, so that $a, is of order unity. From (B 5 ) )  s, is independent of <, and therefore use 
of ( l ) ,  (B 1 ) )  (B 2) and upstream boundary conditions shows that s1 = m, + u-,(0) - aOT. 
The equations for 0, and Y, in (B 5) and their associated boundary conditions 
may be demonstrated to require that s1 = 0 and then provide 0, = 0 and Y, = 0. 
Thus, m, + u-,(O) - aooT = 0, the average of which shows that m, = 0. Therefore 
aOT = u-,(O), as anticipated. Since 0, = 0, (B 5 )  next yields rl = 0, then u1 = 0, and 
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hence p 1  is independent of 5. The upstream boundary condition then shows that 
p1 = 0. The only differential equation in (B 5 )  with a non-trivial solution is that for 
v,. By use of (B 4) and boundary and jump conditions, i t  may be shown that 

A 

v, = Pa,) (1 - uo), 

where a term giving exponential growt,h in 6 has been excluded. This V, solution 
merely defines the transverse projection of the change in the normal velocity through 
the tilted laminar flame. 

When terms of order €2 in (1)-(9) are collected and use is made of the results just 
derived, it is found that 

A 

$2 = r,uo+ro[u,+ ([+a,) ~-mX(o)-aiT-v-m(o) .Qao+ ( ~ 0 - 1 )  I~ao1~1, 

aS,/aC = (1 -yo)  @ao + 6 . V-,(O)] - fj . v-m(o), 

Unlike (B 5 ) ,  for which continuity of O,,Yl and their first derivatives applied a t  
6 = 0, (B 6) must be solved subject to jump conditions on the first derivatives of 0, 
and Y, at 6 = 0, obtained from the expansion of (13) in powers of 6. The second equa- 
tion in (B 6) may be integrated, and the constant of integration may be evaluated 
from the boundary conditions by applying the first equation in (B 6) in the upstream 
flow. The formula 

A 

8 2  = m,-a,,-V. [ao~-m(o)l+t~-mx(O) 

is thereby obtained, where use has been made of the continuity expression 

v . v-, = - u-mx. 

Use of (B 4) and (B 7 )  in the last relationship of (B 6) yields 
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The equation for 0, obtained from (B 6) is the same as (B 8) except for a sign change 
of the right-hand side and the replacement of L by unity. These equations are to be 
solved subject to the vanishing of Y, and 0, at  5 = f 00 and to the jump conditions 
a t  5 = 0 obtained from (13). 

Up to this stage, the method is simpler than the use of multiple scales. However, 
the procedure for solving (B 8) and the corresponding equation for 0, is more tedious. 
This procedure parallels that indicated by Clavin & Williams (1981). For 5 > 0, i t  is 
found that Y, and 0, must remain constant to  avoid exponential growth, whence 
boundary conditions require YjO) = Y$1) = 0 2 (O) = 0 and 04') = a,; the violation at first 
order in p-' of the condition that 0, vanish at 6 = CQ is appropriate here because the 
adjustment of 0, from /3-1a2 to zero occurs on the longer distance scale and need not 
be calculated (in fact cannot be calculated without introducing a two-scale treatment 

Although full solutions for [ < 0 may be sought by standard techniques, the cal- 
culations are tedious, and the results are not needed; it is sufficient to  obtain the 
relationships among the values and derivatives of the solutions at  5 = 0. This can 
be accomplished by integrating (B 8) and the equation for 0, from 5 = -CQ to  c = 0 
and using the boundary conditions at  5 = - m. For brevity write the quantity in the 
curly brackets on the right-hand side of (B 8) as 

of 0). 

A+Bc+Cln  1+- [ 1 r y e f ]  ) 

where A, B and C are independent of 6. Note that B and C are independent of L but 
that A = A(o)+P-lZA(l)+. . . , where A(1) = @ao. The integration can be performed 
explicitly without expansion in p-' for all terms except that involving C. I n  this term, 
the expansion L eLf = et[ 1 + p-'Z( 1 + 6) + . . .] is introduced prior to  integration. Since 
Y, and aY,/a[ vanish at  5 = - co, the first integral of (B 8) then gives 

(B 9) = A -  L-~B+c[F(~)  + p - i ~ ~ ( y )  +. . .I, 

where 

= { 1 -+r2 ( y  = $), 

The first integral of the corresponding equation for 0, provides 

ao,/aq,=,- - = - A(o)+ B - C F ( ~ ) .  
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The results in (B 9) and (B 12) may be expanded in powers of p-' and then used in 
conjunction with the expansion in powers of E of the conditions in (13) to obtain the 
desired information. The results from (13) that are needed are 

02(o)(,=o- = Ypl,,,- = Y2(1)1,=,- = 0, 

a@,co/atl,=,- = $ 1 8 2  - JVa0121, 

aop/aq,=,- + aYp/a&=o- = ZaYp/a&=,-; 

(B 13) 

(B 14) 

(B 15) 

A 

the additional relationship aO.jo)/a&,- = - aY.jo)/af;],=o- is satisfied already by (B 9) 
and (B 12). I n  view of (B 13), the term of order p-lin the expansion of (B 9) is 

a'IPp/a&=,- - laYio)/aiJ6=o- = Z[A(l)+ B + CG(y)]. 

aOd')/a&J~=o- = - l[A(l)+B+ CG(y)]  = 02(')I [=,-. 

Q(8,- IVCZ,(~) = -A(O)+B-CF(y).  

8 2  = - &A(') + B + CG(y)] ,  

(B 16) 

(B 17) 

(B 18) 

(B 19) 

From (B 15) and the term of order p-' in the expansion of (B 12), this result provides 

Use of (B 13) and (B 14) in the term of order unity in (B 12) shows that 
h 

I n  view of the definition 02(1)[,=,- = v2, the last relationship in (B 17) may be written as 

and may then be substitut,ed into (B 18) to  provide an expression for A@). 
From the definitions of A ,  B and C, it is seen that (B 19) states that 

n 

8 2  = l[u-,x(O) - V2aJ [I - G(y)]. 

alT = m2 - +lf'ao12 - 3 . [aOv-rn(O)] - [u-m,(O)-Q2a0] {[I + F(y)] + $1[1 -G(y)]). 

(B 20) 

Substitution into (B 18) then shows that 

(B 21) 

Use of homogeneity, 5-, = 0 and El = 0 in the average of (B 21) provides the first 
non-vanishing correction for the turbulent flame speed, 

A 

m2 = QIVa,12. (B 22) 

Appendix C. Fourth-order solution 
Attention is now restricted to the limit y -+ 0. Put  U = m + EU-, and v = E Y - ~ ,  

and treat u-, and v-, as known functions. Here r = 1, s = m + E[u-, - aT - EV-, . Val, 
and only the solutions to  (6) and (9) need to  be sought. When terms of order e3 are 
collected in (9) and an average is taken, it is found that 

A similar equation for @, is obtained from the average of the expansion of (6). Use 
of terms of order c3 obtained from the jump conditions (13) then leads to  the solutions 
T3 = 8, = 0 for 6 > 0, to  8, and F, being functions that can be obtained from ex- 
pansions of (A 3 )  and (A 4) for [ < 0, and to  

A A  

m3 = Va, .Val.  (C 2) 
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When terms of order c4 are collected in (9) and an average is taken, it is found after 
manipulation that 

The equation for G4, derived from (6), may be obtained from (C 3) by replacing Y 
by 0 and L by unity (but not replacing 1 by zero). These equations are integrated 
from .$ = - 00 to 6 = 0 in the manner of appendix B, with results of appendix B for 
F ( y )  = G ( y )  = 0 used to obtain values and derivatives of the second-order solutions 
a t  6 = 0. The averages of the terms of order €4 in the expansion of the jump conditions 
(13) are then used along with the results of the integration, expanded to two terms in 
/3-1, to provide a set of simultaneous algebraic equations that can be solved for 3, 
and m4. 

I n  pursuing these computations it must be recognized that although Y, = 0 and 
O(i) = 0 for 5 > 0, the non-zero value of Oil) for 6 > 0,  obtained in appendix B, requires 
that 

for .$ > 0; a two-scale analysis is needed if the boundary condition for 0, a t  6 = co 
is to be satisfied to order p-’. The linear term in 6 in (C 4) is a consequence of the 0- 
analogue of - U - ~ ~ ( O )  a ( ~ Y 2 ) / 8 ~  in (C 3), and arises originally from vab/aq + wa@/ag 
in ( 6 ) .  

Solution of the algebraic equations yields 
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